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A general quantitative measure of the tendency towards phase separation is introduced for systems exhibit-
ing phase transitions or crossovers controlled by charge carrier concentration. This measure is devised for the
situations when the quantitative knowledge of various contributions to free energy is incomplete, and is applied
to evaluate the chances of electronic phase separation associated with the onset of antiferromagnetic correla-
tions in high-temperature cuprate superconductors. The experimental phenomenology of lanthanum- and
yittrium-based cuprates was used as input to this analysis. It is also pointed out that Coulomb repulsion
between charge carriers separated by the distances of 1–3 lattice periods strengthens the tendency towards
phase separation by accelerating the decay of antiferromagnetic correlations with doping. Overall, the present
analysis indicates that cuprates are realistically close to the threshold of phase separation—nanoscale-limited
in-plane or even macroscopic with charge density varying between adjacent crystal planes.
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I. INTRODUCTION

Phase transitions or sharp crossovers induced by continu-
ous change in chemical composition have a natural tendency
to cause phase separation. Phase separation occurs when the
free energy of the most stable homogeneous state has con-
cave dependence on the concentration of particles �i.e., this
dependence is curved or peaked upward�. The concave be-
havior is particularly likely in the course of a phase transition
or a crossover, because the free energy switches between two
different dependences characteristic of adjacent phases. The
steeper this switching, the likelier the onset of concave be-
havior. In the case of electronic subsystems in solids, a
strong Coulomb repulsion raises the threshold of phase sepa-
ration and also, if the homogeneous electronic state becomes
unstable, limits the size of single-phase regions to the na-
nometer scale along at least one of the spatial directions. In
the present work, we introduce a quantitative measure of the
above tendency towards phase separation in the vicinity of
phase transitions and crossovers for the situations when the
knowledge of various contributions to free energy is incom-
plete. We justify this measure in a very general context, and
then use it to analyze the chances of electronic phase sepa-
ration in high-temperature cuprate superconductors.

Macroscopic phase separation in cuprates had been ob-
served in LaCuO4+�,1 where it occurs because of the high
mobility of intercalated oxygen that maintains charge neu-
trality within each phase. In other cuprate families, where
dopant ions are immobile, the experimental situation is com-
plicated by the possibility that phase separation may be lim-
ited by Coulomb interaction to the difficult-to-access scale of
a few nanometers, where inhomogeneities can also fluctuate
in time. The direct experimental evidence for static nanos-
cale modulations has been reported so far only for a rather
limited subset of cuprates.2–8

Theoretically, the general tendency towards phase separa-
tion in cuprates and cuprate-related models is extensively

discussed in the literature,9–31 but any conclusion about the
actual presence or absence of phase separation suffers from
uncertainties associated with the gross simplifications in the
models. The important advantage of the phase separation
measure introduced in this work is that it is directly appli-
cable to real materials. At the same time, our analysis also
provides a useful perspective to the results of various model
studies.

Cuprates can exhibit phase separation for two related rea-
sons: the onset of antiferromagnetic �AF� correlations and
the onset of Mott insulating gap. In this work, we focus on
the former and arrive at the conclusion that cuprates are very
close to the phase separation threshold and can realistically
phase separate. The experimental results on the doping de-
pendence of the overall intensity of antiferromagnetic fluc-
tuations in YBa2Cu3O6+x �Ref. 32� and La2−xSrxCuO4 �Ref.
33� constitute important input into our analysis. We also pro-
pose how the phenomenology of phase separation in
LaCuO4+� �Ref. 1� can be used to obtain information about
the properties of “generic” cuprates. Finally we point out that
Coulomb repulsion between charge carriers separated by the
distances of 1–3 lattice periods strengthens the tendency to-
wards phase separation by accelerating the decay of AF cor-
relations with doping.

II. PHASE TRANSITIONS AND PHASE SEPARATION

A. Free energy

We analyze the dependence of free energy of energetically
most stable homogeneous state as a function of charge car-
rier concentration. Negative second derivative of this depen-
dence �equivalent to negative curvature or negative inverse
compressibility� will be considered as a sign of phase sepa-
ration. Motivated by the physics of cuprates, we consider the
“homogeneous” temperature-vs-concentration phase diagram
looking as shown in Fig. 1.
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The total free energy of the system Ftot as a function of
dimensionless charge carrier concentration x can be decom-
posed as shown in Fig. 2, namely,

Ftot�x� = F0�x� + F��x� , �1�

where F0�x� is the free energy of a nonordered state �e.g.,
nonmagnetic Fermi liquid�, and F��x� is the part of free en-
ergy associated with the onset of a more ordered state below
the transition or crossover at x=xc0 �e.g., AF Néel phase or
some kind of electronic liquid with strong AF correlations
such as a resonating valence bond �RVB� state34�.

Let us now introduce the Maxwell construction by assum-
ing that we are dealing with an idealized neutral system,
where particles separate into two macroscopic regions: frac-
tion f1 of them forms regions with the concentration x1,
while fraction f2 goes into the concentration x2. The free
energy Fsep of this phase separated mix is given by equation

Fsep = f1Ftot�x1� + f2Ftot�x2� , �2�

with two constraints

f1 + f2 = 1, �3�

f1x1 + f2x2 = xav, �4�

where xav is the average concentration set by the doping
level. The minimization of Fsep with respect to f1, f2, x1, and
x2 under conditions �3�, �4� gives

�dFtot

dx
�

x=x1

= �dFtot

dx
�

x=x2

=
Ftot�x2� − Ftot�x1�

x2 − x1
. �5�

The derivatives
dFtot

dx are, of course, the chemical potentials of
the two phases.

The above condition has transparent geometrical
interpretation—Maxwell construction—illustrated in Fig.

2�b�: The line connecting points �x1 ,Ftot�x1�� and
�x2 ,Ftot�x2�� should be tangential to the curve Ftot�x� at the
both points. The energy of the phase separated state is then a
point on this line at x=xav. The necessary condition for Eq.
�5� to correspond to a minimum rather than a maximum is to
have a region of negative curvature somewhere between x1
and x2.

If Ftot�x� and its first derivative are continuous every-
where, then there exist three different regions of carrier con-
centrations:

�1� Miscibility gap xm�x�xc0, where the curvature is
negative, and hence, the uniform composition locally un-
stable towards spinodal decomposition.

�2� Metastable regions x1�x�xm and xc0�x�x2, where
the homogeneous state is locally stable due to the positive-
ness of the curvature, but globally unstable, because the fully
separated inhomogeneous state has lower energy.

�3� Stable regions x�x1 and x2�x.
If Ftot�x� exhibits a cusp,35 then one of the above regions

can shrink to a point.
Now we turn to the discussion of the systems of charged

particles described by free energy �1�. We assume that the
nonordered state does not phase separate on its own and,
therefore, the curvature of F0�x�, which we define as

xc0

x0

�FΗ0

energy

FΗ �x�

F0�x�

x1 xm x2
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gap
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FIG. 2. �Color online� Sketches of free energy as a function of
charge carrier concentration for a phase transition accompanied by
phase separation. �a� Free energy of nonordered state F0�x�, and
free energy gain F��x� due to the phase transition at xc0. �b� Total
free energy Ftot�x� �thick line� equal to the sum of F0�x� and F��x�
sketched in �a�, and the Maxwell construction.
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FIG. 1. �Color online� Temperature vs concentration phase dia-
gram for homogeneous phases. The solid line can represent a phase
transition of any order or a crossover. If the homogeneous state is
unstable towards phase separation, then the phase transition or
crossover line shown in Fig. 1 becomes unobservable, and, instead,
the system exhibits two-phase coexistence in a broad region around
that line.
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K0 �
1

2

d2F0

dx2 �6�

is positive everywhere. �This and other curvatures introduced
below may be x dependent in real systems, but our estimates
will not depend on x.� The onset of the more ordered state
should necessarily lower the energy of the system, which, as
obvious from Fig. 2�a�, implies that F��x� should have either
intervals of finite negative curvature, or a point of infinite
negative curvature �upward cusp�. We define the “negative”
curvature of F��x� as

K� � −
1

2

d2F�

dx2 . �7�

The curvature of the total homogeneous free energy can now
be expressed as

Ktot �
1

2

d2Ftot

dx2 = K0 − K�. �8�

The negative sign of Ktot is necessary but not sufficient
condition for the onset of phase separation of charge carriers
due to the additional energy cost �F��x� associated with the
Coulomb repulsion between uncompensated charges, strain
energy, and gradient energy. When dopant atoms are immo-
bile, we expect the main additional contribution to come
from Coulomb energy and denote the positive curvature as-
sociated with this contribution as

KCoul 	
1

2

d2�F

d�x2 . �9�

The condition for the onset of phase separation then becomes

K� � K0 + KCoul, �10�

and the Maxwell construction bounds on the miscibility gap
and the metastable regions should also be modified accord-
ingly. In the next subsection we quantify how large K� can
be for the situations when only the values of F��0� and xc0

are known, with or without additional knowledge of
dF��x�

dx at
x=xc0 and/or x=0.

B. Rigorous constraints on the negative curvature

Eventual phase separation is compatible with the possi-
bilities that the line in Fig. 1 represents a phase transition of
first order �Fig. 3�—always exhibiting a cusp, second or
higher orders �Fig. 2�—with or without cusp dependently on
the critical exponents, or it may also represent a crossover
�Fig. 4�. Before proceeding further, the readers may choose
to read the discussion of these scenarios given in Appendix
A. The part of that appendix on the second order phase tran-
sitions exemplifies the general constraint on the negative cur-
vature to be derived below.

In this subsection, we consider the following problem and
its generalizations.

Problem A. Phase transition: Let us assume, that we can
isolate certain contribution F��x� to the free energy of the
system as a function of charge carrier concentration x. About

this contribution, we only know that, at x=0, F��0�=−F�0
�0 and, for carrier concentrations greater than some given
positive value xc0, F��x�=0. �The sketch for F��x� is given in
Fig. 2�a�.� The latter condition implies that F��xc0�=0 and
F���xc0+0�=0. �Here and everywhere, F��x� refers to the first
derivative with respect to x, and F��x� refers to the second
derivative.� Any path leading from F��xc0� to F��0� should
have a region of negative curvature �or a single point with
infinite negative curvature�. Let us further assume that, for
every possible path F��x� satisfying the above conditions, we
can find the value of the maximum negative curvature
max�− 1

2F���x�� in the interval �0,xc0�. The question we ask
is, what is the minimum possible value of max�− 1

2F���x��?
We denote this value as K�M.

A rigorous solution of this problem is presented in Appen-
dix B. The result is

K�M =
F�0

xc0
2 , �11�

which coincides with the expression �A9� obtained in Appen-
dix A in the framework of Landau expansion for a second

xc0

x

energy

FA�x�

FB�x�

FIG. 3. �Color online� Sketch of a first order phase transition.
The system switches from a potential minimum FA�x� associated
with state A to the potential minimum FB�x� associated with state B.
This transition necessarily leads to an upward cusp.

xc0

x0
�0.1 FΗ0

�FΗ0

energy

FΗ �x�

FIG. 4. �Color online� Sketch of free energy gain F��x� associ-
ated with a crossover �solid line�. Dashed line illustrates the graphi-
cal meaning of convention �13� for fixing the location of the cross-
over point xc0.
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order phase transition. Curvature �11� corresponds to the pa-
rabola shown in Fig. 5. Other sketches in that figure repre-
sent obvious alternatives to the parabolic dependence. These
alternatives exhibit either regions of larger negative curva-
ture, or a point of infinitely negative curvature �cusp� at
x=xc0—both are the possibilities that are stronger in favor of
eventual phase separation. Constraint �11� will play the cen-
tral role in our subsequent analysis of phase transitions and
crossovers.

Problem A can be straightforwardly generalized to a ver-
sion useful for treating crossovers.

Problem A1. Crossover: Assume that F��xc0�=−F�C and
F���xc0�=F�C� � �F�0−F�C� /xc0, where F�C and F�C� are two
new constants. All other conditions are the same as in prob-
lem A.

The solution of problem A1 is �see Appendix B�

K�M =
F�0 − F�C − F�C� xc0

xc0
2 . �12�

In the case F�C� � �F�0−F�C� /xc0, there are paths between x
=0 and x=xc0, which do not exhibit negative curvature.

In the case of crossovers, the choice of xc0 is somewhat
arbitrary. That choice, however, can be made unambiguous
by defining xc0 such that

F�C + F�C� xc0 = 0.1F�0. �13�

The geometrical interpretation of the above definition is
shown in Fig. 4. Given such a definition, constraint �12� can
be rewritten as K�M =0.9F�0 /xc0

2 , which is different from the
basic constraint �11� by only 10%. In the next section, we
will neglect this 10% difference and apply constraint �11� to
the case of crossover with definition �13� for xc0.

In some physical situations, the value of F���0� may also
be known. This knowledge can then be exploited as follows.

Problem A2. F���0�=F�0� , where F�0� is a new constant. All

other conditions are the same as in Problem A1.
The solution of problem A2 is given in the Appendix B.

Here we only give the result: �1� If F�C� � �F�0−F�C� /xc0

�F�0� , then the paths between x=0 and x=xc0 can have no
negative curvature regions or points. Otherwise, �2a� if

F�0� + F�C� �
2�F�0 − F�C�

xc0
. �14�

Then the minimum value of the maximum negative curva-
ture is still given by Eq. �12�. �2b� If condition �14� is not
fulfilled, then

K�M =
F�C − F�0 + F�0� xc0

xc0
2 . �15�

III. ANTIFERROMAGNETIC CROSSOVER IN
CUPRATES

A. Preliminary remarks

In this part, we focus on the doping dependence of the
energy of AF correlations in cuprates. At half-filling �x=0�,
cuprates exhibit AF order caused by exchange coupling be-
tween Cu spins. As doping level x increases, static AF order
disappears through a second order phase transition. However,
the magnetic energy change associated with this phase tran-
sition should not be large �in particular, in hole-doped cu-
prates�, because the disappearance of the static order is due
to the loss of three-dimensional AF correlations between dif-
ferent CuO2 planes. In the paramagnetic state, two-
dimensional AF correlations should still carry large magnetic
energy in a broad parameter region near the transition line.
The subsequent disappearance of magnetic energy associated
with AF correlations can proceed either as a smooth cross-
over, or through one or several phase transitions involving
possibly spin liquid states such as RVB.34

In order to impose the negative curvature constraint �11�
on the doping evolution of magnetic energy, we do not need
to know exactly what happens as the doping level increases.
All we need to know is the easily accessible value of ex-
change energy at zero doping �F�0� and the value of critical
doping xc0, where condition �13� is applicable.

B. Decomposition of free energy

In Eq. �1�, we assign F0�x� to be the lowest possible en-
ergy of a nonmagnetic state at a given charge carrier concen-
tration, and F��x� to be the energy associated with the onset
of AF correlations both static and dynamic. The latter in-
cludes both the AF exchange energy as such plus the change
of kinetic, Coulomb, and all other contributions to the total
energy caused by AF correlations. With this definition, once
the AF correlations disappear, the nonmagnetic state of the
lowest energy is the actual physical state of the system. At
the doping concentrations corresponding to nonzero AF cor-
relations, the notion of the lowest energy nonmagnetic state
should be viewed as a variational ansatz, where the AF cor-
relations are completely suppressed at and below typical ex-
change frequencies. It should be analogous to the paramag-

xc0

x0

�FΗ0

energy

FΗ �x�

FIG. 5. �Color online� Parabola �solid line� minimizing the
value of the maximum negative curvature for the boundary condi-
tions of problem A, and some obvious alternatives to this parabola
�dashed lines�. The straight-line alternative ends in an upward cusp
at x=xc0, which means a cusp with infinite negative curvature. Two
other alternatives have intervals with finite negative curvatures
larger than that of parabola.
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netic state at temperatures much higher than exchange
coupling. At half doping �x=0�, the optimal nonmagnetic
state should be a Mott insulator, where localized spins have
completely random orientations.

C. Estimates of positive and negative curvature contributions
to free energy

In this subsection we estimate curvatures K0, KCoul, and
K� for the paramagnetic, Coulomb, and antiferromagnetic
contributions to free energy, respectively. We are looking for
conditions sufficient for phase separation as follows from
inequality �10�. Therefore, at every step we try to overesti-
mate the factors opposing phase separation, and underesti-
mate factors leading to it.

Everywhere below, the free energy and the corresponding
curvature are evaluated per in-plane Cu atom. Occasionally,
we interchange the terms “doping” and “charge carrier con-
centration.”

1. Paramagnetic curvature

The positive curvature of F0�x� can be estimated as that of
2D Fermi liquid

K0 =
	
2�1 + f0

s�
2m*a2 , �16�

where m* is the effective mass and f0
s the Landau Fermi-

liquid parameter.36 Due to two-dimensionality, expression
�16� is helpfully independent of the Fermi momentum and,
hence, of the charge carrier concentration. Therefore, the
above estimate would apply both to the conventional case,
when all charge carriers form the Fermi sea and, to an alter-
native case, when only doped charge carriers form a Fermi
liquid in the �remnants of� lower Mott-Hubbard band.

The effective mass can be estimated as

m* =
3
2�

	kB
2a2 , �17�

where kB is the Boltzmann coefficient and � is electronic
specific heat coefficient per in-plane Cu atom for overdoped
samples at temperatures high enough to destroy magnetic
correlations. �Here, we ignore the low-temperature
pseudogap behavior in underdoped samples as the pseudogap
itself can be the consequence of nanoscale-limited phase
separation.� For the estimate, we use �=1 mJ /gat K2 �con-
verted per in-plane Cu atom�. This value is consistent with
experiments on La2−xSrxCuO4, YBa2Cu3O6+x, and
Bi2Sr2CaCu2O8+x.

37 It leads to m*	4me, where me is the
mass of free electron.

We are not aware of experiments, which would allow one
to access the value of f0

s directly. It is, however, reasonable to
assume that f0

s 
 f1
s 	6. Here, f1

s is another Fermi-liquid pa-
rameter determined by the effective mass according to rela-
tion m*= �1+ 1

2 f1
s �mb	�1+ 1

2 f1
s �me, where mb is the band

mass. �In normal He-3 at zero applied pressure, f0
s =10.07

and f1
s =6.04.38� As long as f1

s remains sufficiently large, as-
sumption f0

s 
 f1
s guarantees that the resulting value of K0

equals approximately twice the value for the free electron

gas. Our final estimate in Sec. III C 4 will include allowance
for a factor-of-2 uncertainty in the above value.

The lowest energy non-magnetic state may or may not be
a Fermi liquid, especially around zero doping, where the
onset of Mott insulating behavior �charge-transfer gap�, the
presence of random paramagnetic background, and the local-
ization effects due to the random Coulomb potential of dop-
ant atoms can drastically modify the behavior of charge car-
riers. The resulting metal-insulator transition is a fascinating
subject on its own �see, e.g., Refs. 20 and 39�. However, we
feel, that, this transition �presumably around x	0.05� can
only further contribute to the tendency toward phase separa-
tion and, thereby, further strengthen the conclusions of this
work.

The right-hand side of Eq. �16� can be rewritten as
�1+ f0

s� / �2��, where � is the density of electronic states
around the chemical potential. As such, this formula is appli-
cable to non-Fermi liquids: � can be extracted from the spe-
cific heat measurements as 3� / �	kB�2 irrespectively of
whether the substance measured is a Fermi liquid, and pa-
rameter f0

s characterizes the interaction between a newly
added particle and the particles already present in the system.

2. Coulomb curvature in the “lasagna” scenario

When the phase separation of 2D electronic systems is
analyzed, one frequently mentioned picture is that of
Coulomb-frustrated phase separation.12,14,18,29 Many re-
searchers expect that Coulomb-frustrated in-plane phase
separation can explain the formation of stripes, checker-
boards, or other nanoscale-limited inhomogeneous structures
possibly existing in cuprates.

In the present work, however, we explore a different pos-
sibility, which we call the “lasagna scenario.” According to
this scenario, the three-dimensional layered system phase
separates into two-dimensional macroscopic regions of posi-
tive and negative charge lying on top of each other. The
lasagna scenario has appeared in the literature �see, e.g.,
Refs. 19 and 40�, but it is yet to be explored seriously in the
context of cuprates. At the same time, this scenario is easier
to treat theoretically, since one does not need to deal with the
gradient terms and the strongly fluctuational nature of nanos-
cale inhomogeneities.

We further narrow the lasagna scenario to the case of
adjacent layers having equal in absolute value and opposite
in sign densities of uncompensated charge. These regions
effectively screen each other over the distances larger than
the separation between layers. This kind of screening does
not require a perfectly periodic charge order along the c axis
such as �+−+−+−+−�, where + or − represents the sign of
the charge. �Periodic arrangement would imply an observ-
able doubling of the c-axis period.� A more disordered ar-
rangement, where each positive layer has at least one adja-
cent negative layer and vice versa �e.g., �+−−+−+ +−+−��
would be sufficient for the present scenario.

The assumption of equal densities of the opposite charges
was made only for the sake of simplicity. If our particular
lasagna scenario is energetically advantageous over the ho-
mogeneous state, then it is guaranteed that the system is
unstable towards phase separation—either according to this
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scenario, or more general lasagna scenario, or with in-plane
nanoscale inhomogeneities, if they lower the energy even
further or better accessible kinetically. The in-plane phase
separation can also take place as a second stage, after charge
density becomes different in adjacent planes according to the
lasagna scenario.

The Coulomb cost of the lasagna phase separation sce-
nario with equal charge densities can be estimated as that of
Coulomb interaction between uncompensated charges within
radius equal to the distance between the CuO2 planes. The
resulting Coulomb curvature is

KCoul =
2	e2Rs

a
, �18�

where e is the charge of electron, Rs is the distance between
CuO2 planes, and  is the dielectric constant estimated as 30.
Here we sidestep the discussion of multilayered compounds
and consider only single-layer cuprates.

The Coulomb curvature �18� for our scenario is compa-
rable with and can easily be lower than that of nanoscale
limited phase separation. Absence of the nanoscale gradients
is another energetic advantage of the lasagna scenario.
Where it may loose to the in-plane scenario or to a more
general lasagna scenario is in the energy gained from phase
separation. As follows from Maxwell construction �Fig.
2�b��, the charge densities of the oppositely charged regions
in the phase separated state are, in general, not equal to each
other. Imposing the equal charge condition means that the
energy gain due to phase separation is less than optimal.
Another extra cost of the present scenario is that of the sup-
pressed interlayer hopping, which, however, should be small.

3. Antiferromagnetic curvature

Here we apply constraint �11�. We estimate the value of
F�0 in the approximation of staggered spin polarizations as

F�0 =
1

2
JNNNs2 =

1

2
J , �19�

where J is the exchange coupling constant, NNN=4 is the
number of the nearest neighbors on the square lattice, and
s=1 /2 is the value of Cu spin.

The constraint �11� with definition �13� for xc0 now im-
plies that in the interval 0�x�xc0 there exist values of x
such that

K��x� � K�M�xc0� =
J

2xc0
2 , �20�

subject to a 10% error �see the discussion after Eq. �13��.
Qualitatively, constraint �20� suggests that the faster is the
decay of AF correlations with increasing x, the stronger is the
tendency towards phase separation.

The identification of xc0 is the subject of the rest of this
paper. This parameter is difficult to pinpoint, but the focus on
finding it constitutes a new and, presumably, productive ap-
proach to the subject of phase separation in cuprates. The
effectiveness of this approach is related to the fact that K�M
depends very steeply on xc0. The readers should appreciate

that K�M for xc0=0.14 is 4 times larger than for xc0=0.28 and
4 times smaller than for xc0=0.07. Therefore, as long as other
contributions to the curvature are known within a factor of 2,
and xc0 is known with the accuracy of �0.05, one can form
a good judgment about the chances of phase separation.

Both experiments and numerical studies seem to agree
that there are no noticeable AF correlations above x=0.5.
Further constraining xc0 requires a more detailed analysis of
the experimental phenomenology and theoretical scenarios.
This will be done in Secs. III D and III E, respectively, with
the end result that both of these analyses point to xc0	0.14.

4. Combining the estimates

Before trying to pin down the value of xc0, it is useful to
plot the bound on the value of K� as a function of xc0 against
the bounds on K0+KCoul thus comparing the two sides of
condition �10� for phase separation. Such a plot is shown in
Fig. 6.

The horizontal line corresponds to the value of
K0+KCoul estimated according to formulas �16� and �18� with
the following values of parameters: a=4 Å, f0

s =6, m*=4me,
Rs=6 Å, =30. According to this estimate K0=1.35 eV and
KCoul=0.57 eV �both per in-plane Cu�. The shadowed stripe
around the above line covers the region of the factor-of-2
uncertainty in the estimated value.

The line corresponding to K��xc0� is obtained using
K�M�xc0� given by Eq. �20� with J=125 meV. The shaded
stripe above this line also represents the region of the factor-
of-2 uncertainty. This region does not spread below the line,
because of the nature of constraint �20�. �Here the 10% un-
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FIG. 6. �Color online� Estimates for negative �K�� and positive
�K0+KCoul� contributions to energy curvature per one in-plane Cu.
Negative curvature is plotted as a function of unknown critical con-
centration xc0. Solid lines represent the estimates by formulas �20�,
�16�, and �18� with the numbers given in the text. Shaded areas
around the lines cover the regions of the factor-of-2 uncertainty for
the above estimates.
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certainty associated with condition �13� and the small uncer-
tainty in the knowledge of J are neglected.�

The qualitative interpretation of Fig. 6 can be phrased as
follows:

�i� if xc0�0.12, then the system almost certainly phase
separates;

�ii� if 0.12�xc0�0.18, then the system likely phase sepa-
rates;

�iii� if 0.18�xc0�0.26, then the chances of phase sepa-
ration are about 50%;

�iv� for 0.26�xc0�0.36, the chances of phase separation
are still significant but less then 50%;

�v� finally, for 0.36�xc0, phase separation is increasingly
unlikely.

D. Constraint on xc0 from experiments

Recent experiments by Wakimoto et al.33 show that the
intensity of AF correlations integrated in the frequency range
0–100 meV in La2−xSrxCuO4 at x=0.3 is about 10% of that
in La2−xBaxCuO4 at x=0.125, which, in turn, should be sig-
nificantly smaller than the AF intensity in the parent com-
pound LaCuO4 corresponding to x=0. Similar results but
with a smaller frequency integration range, 0–50 meV, were
also reported previously for YBa2Cu3O6+x by Bourges.32 It
thus appears that xc0	0.3 would satisfy condition �13� de-
fining the critical crossover concentration.

However, xc0 can also be significantly smaller than 0.3. If
phase separation actually takes place in cuprates, then the
experimental magnetic signal can come from hole-poor re-
gions of the phase separated state. All we can conclude then
is that x2	0.3, but the maximum critical concentration xc0
for the homogeneous state can be significantly smaller than
x2. �Here x2 is the right end of the right metastable region
defined in Sec. II A and on Fig. 2�b�.�

We propose to further constrain xc0 using the phenom-
enology of phase separation in LaCuO4+� �Fig. 7�, and the
fact that for a phase diagram such as the one shown in Fig. 1,
the temperature-dependent critical concentration, which we
denote here as xc�T� should be close to the right boundary
between spinodal �locally unstable� region and metastable
�locally stable� region. �Note: xc0�xc�0�.� As shown in Ap-
pendix A 2, xc�T� simply coincides with the spinodal bound-
ary in the case of second order phase transitions.

Oxygen intercalated LaCuO4+� is an atypical cuprate fam-
ily, where macroscopic phase separation actually takes place,
supposedly because intercalated oxygen atoms remain mo-
bile between CuO2 planes above temperatures about 200 K.
The redistribution of intercalated oxygen can thus screen the
uncompensated charge of electronic inhomogeneities. A
popular piece of the experimental phenomenology of phase
separation in LaCuO4+� is shown in Fig. 7. The horizontal
axis of Fig. 7 represents the value of � in LaCuO4+�. It is
tentatively assumed to be related to the charge carrier con-
centration as x=2�.

The energetics of intercalated oxygen can be a large part
of the energy balance behind the phase separation in
LaCuO4+�. However, it is clear from our estimate in Sec.
III C 4, that the contribution to the phase separation energy

balance from AF correlations in CuO2 planes should also be
large. When several large energy terms closely compete for
and against phase separation and the overall energy gain re-
sulting from phase separation is small, then it is likely that
the spinodal region ends where one of the large competing
terms suddenly becomes small. In the present case, we know
that the energy of AF correlations decreases steeply in the
relevant doping region. Therefore, it is natural to expect that
the spinodal region in LaCuO4+� ends where the AF correla-
tions either disappear or are drastically reduced.

It is not entirely straightforward to extract the boundary of
spinodal region from experiments. For infinitely slow cool-
ing, one expects that the system starts phase separating once
the value of x2�T� �the right boundary of metastable region�
becomes equal to the externally set doping level. However,
for a finite cooling rate, the onset of phase separation may
happen at lower temperatures, because it requires activation
over an energy barrier between metastable homogeneous
state and phase-separated state. One can only be certain, that,
even if the cooling rate is too fast �but the oxygen ions re-
main mobile�, phase separation should start once the charge
carrier concentration reaches the right spinodal boundary,
which we associated with the critical concentration xc�T�. In
other words,

xc�T� � xexp�T� , �21�

where xexp�T� is the right boundary of the phase separation
range observable experimentally at temperatures, where in-
tercalated oxygen ions are still mobile. The loss of oxygen
mobility manifests itself in the freezing of the experimentally
observable boundaries of the phase separation region, i.e.,
these boundaries in the axes of Fig. 7 become vertical. One
can then see that in Fig. 7 there are only two useful experi-
mental points for the right end of the phase separation
region—those through which the straight line is drawn. This

FIG. 7. �Color online� Experimental data points for the phase
separation diagram of LaCuO4+� from Ref. 1 with solid straight line
superimposed on the top of it to extrapolate to the right boundary of
the phase separation region for the hypothetical case of never-
frozen oxygen motion. The nominal charge carrier concentration is
x=2�.
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straight line is a crude extrapolation aiming at finding the
right boundary of the phase separation range for the hypo-
thetical case of never-frozen oxygen ions. This line crosses
the horizontal axis at �=0.065, which, according to the as-
sumption x=2�, implies xexp�0�=0.13. Given inequality �21�
and recalling that xc0�xc�0�, we then obtain

xc0 � 0.13. �22�

It had been reported41 that, in fact, x�2�. This, however,
only strengthens the case for inequality �22�.

To summarize this subsection, we have discussed the di-
rect observational constraint33 xc0�0.3 and an indirect ex-
perimental evidence �Fig. 7� for xc0�0.13. In terms of Sec.
III C 4, xc0=0.3 implies that the chances of phase separation
are significant but less than 50% while xc0�0.13 indicates
that phase separation is likely, i.e., its chances are signifi-
cantly above 50%.

E. Theoretical discussion of microscopic factors

The studies of the t-J and Hubbard models for the values
of parameters relevant to the cuprates9,13–15,17,24–28,30,31 agree
that these models are close to the threshold of phase separa-
tion but do not reach the consensus on whether phase sepa-
ration actually takes place. However, the common expecta-
tion is that even if the t-J or Hubbard model solutions are
slightly over the phase separation threshold, the in-plane
Coulomb repulsion between charge carriers �not included in
the models but present in real materials� would easily sup-
press phase separation. Ivanov24 has reported numerical re-
sults directly supporting this expectation.

The above expectation appears to be in conflict with the
conclusion of the preceeding subsection derived from the
analysis of experiments. Below we further suggest that this
expectation can be misleading on purely theoretical grounds.
We argue that the omission of the “medium-range” Coulomb
repulsion between the charge carriers separated by 1–3 lat-
tice periods leads to a larger value of the critical concentra-
tion xc0, where AF correlations vanish. This, in turn, weakens
the tendency towards phase separation.

We introduce the effect of the medium-range Coulomb
interactions on the doping dependence of AF correlations in
several steps as illustrated in Fig. 8. We start from the half-
filled state, where the exchange energy per spin is about J /2,
and then estimate xc0 as the concentration of holes necessary
to destroy this energy. Although F��x� includes indirect ef-
fects of AF correlations in addition to just AF exchange en-
ergy, this function should become zero, when AF correlations
disappear, which, in turn, happens simultaneously with AF
exchange energy falling to zero.

First we consider the approximation of “independent
charge carriers” �line �a� in Fig. 8�, according to which, each
hole independently destroys AF correlations in the region
around itself. The AF energy cost of a doped hole can be
estimated42 using the typical length of two lattice periods for
the string of broken AF bonds, which are left behind by the
hole added to the half-filled t-J model with t /J=3. This
means that 1 hole creates approximately 7 ferromagnetic
bonds at energy cost J /2 each, i.e., it destroys AF energy

about 7
2J. This simple estimate should be reasonable for a

broader class of situations beyond the string picture in the t-J
model.

In the above approximation, the AF energy disappears at
the doping concentration determined by the condition

7

2
Jxc0 =

1

2
J , �23�

which means xc0	0.14.
The above estimate of the AF exchange energy per hole

should hold for very small doping concentrations. As step 2
of our analysis, we take into account the fact that, at larger
concentrations, the holes would tend to hop onto the sites
with AF bonds broken by a nearby hole. The AF exchange
energy cost per hole is, therefore, reduced as the hole con-
centration increases, following line �b� sketched in Fig. 8.
This sketch presumably reflects what happens in the t-J and
Hubbard models and explains why xc0 associated with those
models can easily increase to the values 0.4–0.5, which, in
turn, makes the onset of phase separation uncertain. �Note:
The approximation of independent charge carriers can still be
used here to obtain F���0� and then impose the constraints on
the negative magnetic curvature resulting from problem A2
of Sec. II B.�

At the next step, we introduce the medium-range Cou-
lomb repulsion between charge carriers. This repulsion pre-
vents one hole from taking advantage of the AF bonds bro-
ken by another hole. Therefore, each hole again destroys
more AF bonds. It is this factor, that may have been missing
in the numerical work of Ivanov,24 who found that the near-
est neighbor Coulomb repulsion suppressed phase separa-
tion. In Ref. 24, however, a variational ansatz was used,
which did not suppress the chances of holes to occupy adja-
cent lattice sites, and, therefore, not surprisingly, the result-
ing energy balance opposed phase separation.

0.1 0.2
x0

�J �2

exchange energy

�a�
�c�

�b��d�

FIG. 8. �Color online� Illustrations for various scenarios for the
doping evolution of the AF exchange energy in cuprates: �a� inde-
pendent charge carriers; �b� correlated charge carriers in AF back-
ground; �c� medium-range Coulomb repulsion between charge car-
riers added; �d� Coulomb potential of dopant atoms added. See the
discussion in the text.
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One can estimate the Coulomb interaction constants be-
tween holes occupying adjacent lattice sites as 700 meV.
This estimate uses the high frequency dielectric constant
	5. The high frequency value is taken, because the lifetime
of the region of broken AF bonds can be estimated as 1 /J,
which is faster than the time scale of lattice vibrations re-
sponsible for low frequency Coulomb screening. �We assume
the Debye frequency 60 meV /
.�

One should also consider the possibility of holes forming
long-living pairs or larger clusters. In this case, lattice would
have time to respond, which means that it would additionally
screen the interaction between holes, and thereby reduce the
dielectric constant to 	30.43 However, even in the latter
case, the repulsion between holes occupying nearest neigh-
bor sites remains significant—about 100 meV.

Once the medium-range Coulomb repulsion is taken into
consideration, the plot of exchange energy as a function of
doping concentration should pass somewhere between lines
�a� and �b� in Fig. 8, which gives line �c�. At lower concen-
trations, it is closer to the independent hole approximation,
i.e., line �a�, and at higher concentrations, when charge car-
riers have no choice but to approach each other, the plot
should be closer to line �b�. Thus, the effect of the medium
range Coulomb repulsion is to make the AF crossover
sharper, i.e., the AF negative curvature in the crossover re-
gion around x	0.14 should become larger.

The next level of approximation is to introduce the Cou-
lomb potential of dopant ions—line �d� in Fig. 8. At low
doping concentrations, this potential should localize holes
around dopant ions and thereby reduce the radius of the re-
gion around the hole, where AF correlations are destroyed.
Therefore, the low doping part of the AF energy vs doping
concentration plot should have smaller slope than the one in
the preceeding step. As the doping concentration increases,
the Coulomb potential wells around the dopant ions start
overlapping stronger, and therefore, the result of the previous
step is recovered. As is obvious from Fig. 8 such a correction
further increases the AF negative curvature in the region
around x	0.14. Quantitatively, however, this correction de-
pends on the localization radius around dopant ions and may
be minor, if this radius is larger than two lattice periods. The
latter appears to be the case for the cuprates.43

Finally, the Coulomb interaction would also play an im-
portant role in the energy balance determining what kind of
inhomogeneous patterns emerge if the homogeneous state
becomes unstable, but this is the subject beyond the scope of
the present work. As mentioned in Sec. III C 2, the above
instability can lead, among others, to stripes,2 checkerboards
�e.g., Refs. 44–46�, or the charge imbalance between adja-
cent CuO2 planes.

IV. CONCLUSIONS

We have demonstrated that focusing on the question of
how the energy associated with magnetic or other type of
correlations evolves with doping, leads to a useful insight
into the factors controlling phase separation in the vicinity of
phase transitions and crossovers. We have introduced a quan-
titative constraint on the negative curvature contribution to

the free energy and used this constraint to evaluate the
chances of electronic phase separation in the cuprates.

Our analysis of the antiferromagnetic crossover in the cu-
prates has led us to conclude that these materials are realis-
tically close to the phase separation threshold, and the
chances that they generically exhibit some form of phase
separation within the superconducting doping range are
quantitatively significant. In particular, the lasagna phase
separation scenario with macroscopic regions of opposite
charge lying on the top of each other in adjacent CuO2 planes
appears to be quite viable and creates additional worry for
the interpretation of many experiments. Cuprates also appear
to be closer to the phase separation threshold than the expec-
tations based on the Hubbard and t-J models suggest. This
may be related to the fact that the above models neglect
Coulomb interaction between charge carriers separated by
1–3 lattice sites.

The proximity to the phase separation threshold on either
side, rather than the presence or the absence of phase sepa-
ration as such, may be the distinguishing characteristics of
the superconducting cuprates. The resulting “softness” of the
electronic liquid should then lead to significant fluctuations
of charge density and electric field at long wavelengths and
relatively low frequencies.47
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APPENDIX A: SCENARIOS OF PHASE SEPARATION

The fact that the system phase separates is sometimes
perceived as implying first order phase transition. However,
in the case of volume constrained systems, e.g., electrons on
the lattice, the relation between phase separation and the or-
der of phase transition becomes less straightforward. In con-
trast to the more familiar constraint of constant pressure,
which allows the phase coexistence only at a fixed tempera-
ture of a first order phase transition, the constraint of con-
stant volume allows the coexistence of two phases in a range
of temperatures.48 Such a property, in turn, defeats the clas-
sification of the resulting behavior in terms of the jumps of
thermodynamic derivatives, because, when the temperature
of the system decreases past the phase separation threshold,
the volume fraction of the second phase increases gradually,
which normally implies no jump in entropy and no latent
heat, but leads to a jump in the specific heat similar to a
second order phase transition. Yet, at the phase separation
temperature, the homogeneous state usually remains meta-
stable, which means, that, in order to become phase sepa-
rated, the system has to overcome a nucleation threshold. In
our classification, we distinguish between the following
types of “would-be” homogeneous phase transitions, which
are behind the onset of phase separation.

1. First order phase transitions

At a first order phase transition, the system switches from
one minimum of free energy to another, not continuously
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connected to the first one in the space of macroscopic vari-
ables of the system. The values of free energy of the minima
should have different dependencies on the carrier concentra-
tion. The switching between the two minima takes place at
the critical carrier concentration, where the two free energies
coincide �see Fig. 3�. As obvious from Fig. 3, this guarantees
that the resulting concentration dependence of the minimal
free energy has an upward cusp at x=xc0. The upward cusp
implies infinite negative second derivative at x=xc0, which,
in turn, guarantees that the system phase separates around xc0
�at least on nanoscale�, no matter what the value of Coulomb
interaction is.

Since the observation of phase separation does not imme-
diately imply that the underlying homogeneous transition
would be of the first order, one can make a compelling case
in favor of such a transition, only when none of the two
phases can emerge from the other as a result of spontaneous
symmetry breaking, e.g., for antiferromagnetic-
ferromagnetic transition in the context of colossal magne-
toresistance manganites, and for the low-temperature-
orthorhombic– low-temperature-tetragonal �LTO-LTT�
transition in cuprates and nickelates. However, even in the
above two examples, the homogeneous transition can be split
into two closely spaced second order transitions resulting in
a “rounded” cusp in the concentration dependence of free
energy.

2. Second order phase transitions

We start from the standard Landau expansion for a second
order phase transition in terms of an order parameter having
absolute value � �e.g., the absolute value of staggered mag-
netization�. The transformational properties of this order pa-
rameter under time reversal are such that, in the absence of
external field, only even powers of � enter the expansion for
the free energy, i.e.,

F� = A�2 + B�4, �A1�

where A and B are two expansion coefficients. The onset of
the phase transition is determined by the sign of coefficient
A, which can be parametrized as A=��T−Tc�, where � is a
positive constant, T is temperature, and Tc is the transition
temperature. At T�Tc, A is negative and hence the minimum

of free energy is reached at �=���Tc−T�

2B . The minimized free
energy is then

F� = −
�2�Tc − T�2

4B
. �A2�

Now we consider the evolution of parameters in Eq. �A2�
as a function of carrier concentration as relevant to the phase
diagram shown in Fig. 1. The ratio �2

4B may depend on the
concentration x, but near �below� the critical doping concen-
tration xc0, the key factor is the dependence of Tc on x, which
we parametrize in the vicinity of xc0 as

Tc = ��xc0 − x� , �A3�

where � is a slope parameter. Any alternative parametrization
of the form Tc=��xc0−x��with ��1 or 0���1 would be

more favorable to phase separation �see Fig. 5 and the related
discussion in Sec. II B�. Substituting Eq. �A3� into Eq. �A2�,
we obtain

F� = − K��xc�T� − x�2, �A4�

where K� the negative curvature given by

K� =
�2�2

4B
�A5�

and

xc�T� = xc0 −
T

�
. �A6�

Important for the analysis of cuprates is the property that, if
the negative curvature �A5� outweighs the positive curvature
of the rest of the free energy, then one of the ends of the
miscibility gap would coincide with xc�T�.

The value of K� given by Eq. �A5� can now be estimated
as follows. The slope of the Tc-vs-x line around x=xc0 can be
crudely approximated as

� =
Tc0

xc0
, �A7�

where Tc0 is the critical temperature at x=0. The value of
�2 / �4B� can be estimated by equating the Landau expansion
result and the approximate microscopic value of the gain in
the ordering energy F��x� at x=0, T=0:

F�0 =
�2

4B
Tc0

2 . �A8�

The value of F�0 is assumed to be known either from experi-
ments or from direct microscopic considerations. Thus

K� =
F�0

xc0
2 . �A9�

Despite the crudeness of the assumptions that led to Eq.
�A9�, the right-hand side of this equation is, in fact, a rigor-
ous constraint on the negative curvature for a broad class of
situations. It is formulated in Sec. II B and derived in Appen-
dix B.

3. Crossovers

Crossovers constitute, perhaps, the most general case,
where neither of the derivatives F��x� exhibits a jump �see
Fig. 4�. For the purposes of this work, phase transitions of
orders higher than 2 can also be treated as crossovers. As
with second order phase transitions the crossovers must lead
to the regions of the negative curvature of F��x�. One can
make a good estimate of this curvature by approximating the
crossover behavior of F��x� by a suitable second order phase
transition curve. This procedure is put on a firm foundation
in Sec. II B and Appendix B.

APPENDIX B: DERIVATIONS OF THE CONSTRAINTS ON
THE CURVATURE

In this Appendix, we present the rigorous solutions of
problems labeled as B, B1, and B2, which are equivalent, in
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respective order, to problems A, A1, and A2 formulated in
Sec. II B. While the problems A, A1, and A2 are of physical
interest to us, the alternative formulation allows us to avoid
many unnecessary minus signs and factors 1/2 in the solu-
tion. Everywhere below, variables without subscripts, such as
F�x�, F��x� and F��x�, are the functions of the argument in
the parentheses, whereas subscripted variables such as F1,
F2, F1�, F2�, Fmax� , Fmax� , etc., are only the numbers and, if
followed by parentheses should be multiplied by the expres-
sion in the parentheses. As in Sec. II B, prime and double
prime superscripts denote the first and the second deriva-
tives, respectively.

Problem B. Here we consider all paths leading from x
=x1 to x=x2�x1, such that F�x1�=F1, F��x1−0�=0, and
F�x2�=F2�F1, and the question is, what is the minimum
possible value of the maximum positive second derivative
(max�F��x��) on a path leading from F�x1� to F�x2�? See Fig.
9.

Functions F�x� need not be analytical. Here, the infinite
positive second derivative F��x� would disqualify the path,
while infinite negative second derivative may be present in
the optimal path. With the above reservations, we will for-
mally treat paths F�x� as if they were analytical functions.

Solution of problem B. Let us denote the maximum values
of F��x� and F��x� in the interval �x1 ,x2� as Fmax� and Fmax� ,
respectively and the value of x, where F��x� reaches its
maximum, as xm. We now express F2 as follows:

F2 = F1 + �
x1

xm

F��x�dx + �
xm

x2

F��x�dx . �B1�

Let us now denote the maximum value of F��x� within the

first interval �x1 ,xm� as F̃max� . Since F��x1�=0, the value of
F��x� within the above interval can be constrained as fol-
lows:

F��x� = �
x1

x

F��x��dx� � F̃max� �x − x1� . �B2�

Inequality �B2� has two consequences

Fmax� � F̃max� �xm − x1� �B3�

and

�
x1

xm

F��x�dx �
1

2
F̃max� �xm − x1�2. �B4�

For the second integral in Eq. �B1�, we use the bound

�
xm

x2

F��x�dx � Fmax� �x2 − xm� . �B5�

Now, substituting the constraint �B3� for Fmax� into inequality
�B5� and combining the result with Eq. �B1� and inequality
�B4�, we obtain

F2 � F1 +
1

2
F̃max� ��x2 − x1�2 − �x2 − xm�2� . �B6�

The expression in the square brackets above is always posi-
tive in the interval �x1 ,x2� and has maximum value, when
xm=x2. Taking this into account together with the fact that

Fmax� � F̃max� , we, finally, obtain

Fmax� �
2�F2 − F1�
�x2 − x1�2 . �B7�

The right-hand side of the above inequality actually repre-
sents a possible value of the maximum curvature, which cor-
responds to parabola

F�x� = F1 +
F2 − F1

�x2 − x1�2 �x − x1�2. �B8�

Hence the right-hand side of inequality �B7�, is the minimum
possible value of Fmax� . In terms of problem A, this result
implies formula �11�. The A-problem counterpart of parabola
�B8� is shown in Fig. 5.

Now we generalize problem B to problem B1 �equivalent
to problem A1 from Sec. II B�. Problem B1 has all condi-
tions of problem B and, in addition: F��x1�=F1�. All other
notations will be the same as in the solution of problem B.

Solution of problem B1. One can reduce problem B1 for
F�x� to problem B for function

G�x� = F�x� − F1��x − x1� . �B9�

In this case, G�x1��G1=F1, and G�x2��G2=F2−F1��x2

−x1�. The curvatures of G�x� and F�x� are, obviously, the
same everywhere. If G2�G1 or, equivalently,

F1� �
F2 − F1

x2 − x1
, �B10�

then inequality �B7� translates into

Fmax� �
2�G2 − G1�
�x2 − x1�2 =

2�F2 − F1 − F1��x2 − x1��
�x2 − x1�2 .

�B11�

If condition �B10� is not satisfied, then there are paths be-
tween x1 and x2, which have no regions of positive curvature.
Inequality �B11� is equivalent to Eq. �12� for problem A1.

x1 x2

x

F1

F2
F F�x�

FIG. 9. �Color online� Illustration for the boundary conditions of
problem B.
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Let us now turn to problem B2, which has condition
F��x2�=F2� in addition to all other conditions of problem B1.

Let us further assume that F��x1�=0. �If F��x1��0, then
one can perform transformation �B9� and bring the problem
to the condition desired.�

We first consider the situation �case I�, when

F2� �
2�F2 − F1�

x2 − x1
. �B12�

The right-hand side of the above inequality is the first de-
rivative at x=x2 of the optimal parabolic path �B8� achieving
the minimum of Fmax� in the absence of constraint on F��x2�.

Now we make the following two remarks.
�1� The minimum of Fmax� in the present case �with con-

straint on F��x2�� cannot be smaller than the minimum ob-
tained for the case without the constraint on F��x2�. There-
fore, if we construct a path, whose Fmax� can be made
arbitrarily close to the minimum Fmax� for the constraint-free
case, then the constraint-free minimum will simultaneously
be the minimum for the present case.

�2� Possible paths can have points of infinite negative sec-
ond derivative �see the earlier discussion�.

The example anticipated in the first remark, indeed exists.
The required path consists of a parabola, which approaches
arbitrarily close from above to the optimal parabola �B8� in
the case without constraint on F��x2�. When the former pa-
rabola crosses the straight line described by function F�x�
=F2+F2��x−x2�, the path just switches to that straight line
thus exhibiting infinite negative second derivative. The maxi-
mum positive second derivative on such a path is that of its
parabolic part, which, therefore, can have value arbitrarily
close to that of the optimal parabola �B8�. Thus case I of the
present problem with F��x1�=0 results in condition �B7�.

Now we turn to case II, corresponding to condition

F2� �
2�F2 − F1�

x2 − x1
. �B13�

In this case, the straightforward generalization of the solution
for case I would not work, because the switching between
the parabola and the straight line would have to exhibit infi-
nite positive second derivative, which would be contrary to
our task of minimizing Fmax� .

Instead we define a new function

H�x� = F�x� − F2��x − x2� , �B14�

which everywhere has the same second derivative as F�x�.
The new function is constrained by the following conditions:

H�x1� � H1 = F1 + F2��x2 − x1� , �B15�

H��x1� � H1� = − F2�, �B16�

H�x2� � H2 = F2, �B17�

H��x2� � H2� = 0. �B18�

Conceptually, the problem for H�x� is a mirror reflection of
our original problem for F�x�, and, moreover, case II of the
problem for F�x� corresponds to case I for H�x�. The latter is
defined by the condition

H1� �
2�H1 − H2�

x2 − x1
. �B19�

which is, indeed, fulfilled given inequality �B13� and Eqs.
�B15�–�B17�. This means that the path minimizing the maxi-
mum positive curvature for both H�x� and F�x� is a parabola,
which matches the constraint on the first derivative at x=x2
and switches to a straight line near x=x1. It is characterized
by

Fmax� =
2�F1 − F2 + F2��x2 − x1��

�x2 − x1�2 . �B20�

We conclude this Appendix by giving explicit expressions
for the results of problem B2 for the case, when F��x1��0
and F��x2��0.

�1� If F��x1��
�F2−F1�

x2−x1
and either there is no constraint

on F��x2�, or F��x2��
�F2−F1�

x2−x1
, then the paths between x1 and

x2 can have no regions of positive curvature.
Otherwise:

�2a� If either F��x1�+F��x2��
2�F2−F1�

x2−x1
or F��x2� is

unknown, then the minimum value of Fmax� is given by the
right-hand side of inequality �B11�.

�2b� If F��x2� is known and F��x1�+F��x2��
2�F2−F1�

x2−x1
, then

the minimum of Fmax� is given by Eq. �B20�.
In both cases �2a� and �2b�, the minimal values of Fmax�

correspond to parabolas passing through points �x1 ,F1� and
�x2 ,F2�. In case �2a�, the optimal parabola matches the given
value of F��x1�, while in case �2b� it matches F��x2�.

In the end of Sec. II B, the above results are reexpressed
for the negative curvature in terms of problem �A2�.

*B.Fine@thphys.uni-heidelberg.de
†egami@utk.edu
1 P. G. Radaelli, J. D. Jorgensen, R. Kleb, B. A. Hunter, F. C. Chou,

and D. C. Johnston, Phys. Rev. B 49, 6239 �1994�.
2 J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S.

Uchida, Nature �London� 375, 561 �1995�.

3 M. Fujita, H. Goka, K. Yamada, J. M. Tranquada, and L. P. Reg-
nault, Phys. Rev. B 70, 104517 �2004�.

4 J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H.
Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 �2002�.

5 J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S.
Uchida, and J. C. Davis, Science 297, 1148 �2002�.

B. V. FINE AND T. EGAMI PHYSICAL REVIEW B 77, 014519 �2008�

014519-12



6 C. Howald, H. Eisaki, N. Kaneko, M. Greven, and A. Kapitulnik,
Phys. Rev. B 67, 014533 �2003�.

7 M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani,
Science 303, 1995 �2004�.

8 T. Egami, J. Phys. Chem. Solids 67, 2013 �2006�; 67, 2013
�2006�.

9 V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett. 64,
475 �1990�.

10 M. Grilli, R. Raimondi, C. Castellani, C. Di Castro, and G. Kot-
liar, Phys. Rev. Lett. 67, 259 �1991�.

11 E. Sigmund, V. Hizhnyakov, and G. Seibold, in Phase Separation
in Cuprate Superconductors, edited by K. A. Müller and G.
Benedek �World Scientific, Singapore, 1992�, p. 46.

12 V. J. Emery and S. A. Kivelson, Physica C 209, 597 �1993�.
13 E. Dagotto, Rev. Mod. Phys. 66, 763 �1994�.
14 E. L. Nagaev, Phys. Usp. 165, 529 �1995�; Phys. Usp. 38, 497

�1995�.
15 C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 78, 4609

�1997�.
16 R. S. Markiewicz, Phys. Rev. B 56, 9091 �1997�.
17 F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700

�2000�.
18 J. Lorenzana, C. Castellani, and C. DiCastro, Phys. Rev. B 64,

235127 �2001�.
19 S. A. Kivelson, G. Aeppli, and V. J. Emery, Proc. Natl. Acad. Sci.

U.S.A. 98, 11903 �2001�.
20 G. Kotliar, S. Murthy, and M. J. Rozenberg, Phys. Rev. Lett. 89,

046401 �2002�.
21 E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad, in The

Physics of Conventional and Unconventional Superconductors,
edited by K. H. Bennemann and J. B. Ketterson �Springer-
Verlag, Berlin, 2003�.

22 J. B. Goodenough, J. Phys.: Condens. Matter 15, R257 �2003�.
23 M. Capone, G. Sangiovanni, C. Castellani, C. Di Castro, and M.

Grilli, Phys. Rev. Lett. 92, 106401 �2004�.
24 D. A. Ivanov, Phys. Rev. B 70, 104503 �2004�.
25 M. Aichhorn and E. Arrigoni, Europhys. Lett. 72, 117 �2005�.
26 M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke, Phys. Rev.

B 74, 235117 �2006�.
27 M. Lugas, L. Spanu, F. Becca, and S. Sorella, Phys. Rev. B 74,

165122 �2006�.
28 A. Macridin, M. Jarrell, and T. Maier, Phys. Rev. B 74, 085104

�2006�.
29 C. Ortix, J. Lorenzana, and C. Di Castro, Phys. Rev. B 73,

245117 �2006�.
30 M. Eckstein, M. Kollar, M. Potthoff, and D. Vollhardt, Phys. Rev.

B 75, 125103 �2007�.
31 A. N. Kocharian, G. W. Fernando, T. Wang, K. Palandage, and J.

W. Davenport, Phys. Lett. A 364, 57 �2007�.
32 P. Bourges, in Neutron Scattering in Novel Materials, edited by

A. Furrer �World Scientific, Singapore 2000�, p. 252.
33 S. Wakimoto, K. Yamada, J. M. Tranquada, C. D. Frost, R. J.

Birgeneau, and H. Zhang, Phys. Rev. Lett. 98, 247003 �2007�.
34 P. W. Anderson, Science 235, 1196 �1987�.
35 Less generic situations occur either, when Ftot�x� exhibits an up-

ward cusp in the interval between x1 and x2 �first order phase
transition� or, when it has downward cusps at x1 or x2 �the
chemical potential crosses a gap in the density of states�. In the
former case, the spinodal region may be reduced to a single
point. In the later case, one or two metastable regions may be
reduced to a point.

36 L. D. Landau, Sov. Phys. JETP 3, 920 �1957�.
37 J. W. Loram, J. Luo, J. R. Cooper, W. Y. Liang, and J. L. Tallon,

J. Phys. Chem. Solids 62, 59 �2001�.
38 J. C. Wheatley, Rev. Mod. Phys. 47, 415 �1975�.
39 R. S. Markiewicz, Phys. Rev. B 70, 174518 �2004�.
40 C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Phys. Rev. Lett.

70, 379 �1993�.
41 Z. G. Li, H. H. Feng, Z. Y. Yang, A. Hamed, S. T. Ting, P. H. Hor,

S. Bhavaraju, J. F. DiCarlo, and A. J. Jacobson, Phys. Rev. Lett.
77, 5413 �1996�.

42 B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 60, 740 �1988�.
43 M. A. Kastner and R. J. Birgeneau, Rev. Mod. Phys. 70, 897

�1998�.
44 B. V. Fine, Phys. Rev. B 70, 224508 �2004�.
45 B. V. Fine, Phys. Rev. B 75, 060504�R� �2007�.
46 J. A. Wilson, arXiv:cond-mat/0703251 �unpublished�.
47 A. J. Leggett, Proc. Natl. Acad. Sci. U.S.A. 96, 8365 �1999�.
48 L. D. Landau and E. M. Lifshitz, Statistical Physics, 3d ed. �Per-

gamon Press, New York, 1980�, Part 1.

PHASE SEPARATION IN THE VICINITY OF QUANTUM-… PHYSICAL REVIEW B 77, 014519 �2008�

014519-13


